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Abstract. Modifications to general relativity have been suggested as viable alternatives to
dark energy, introduced to explain the accelerated expansion of the Universe. We perform
a Bayesian analysis on modified gravity models using current cosmological observations.
We investigate the evolution both of the background universe and density perturbations.
While the cosmic expansion can be recast using an effective equation-of-state weff(a), the
evolution of linear perturbations is studied by the introduction of two parametric functions:
the ratio of the two metric potentials and the ratio of an effective gravitational constant
to the Newtonian constant in the Poisson equation. With the use of large-scale structure,
cosmic microwave background and supernovae data we are be able to impose constraints
on any f(R) model, in particular we consider a variant of the Starobinsky model f(R) =

R− λRc
[
1−

(
1 + α R

Rc

)−n]
parameterised in terms of λ, α and n. We find that, for n = 2,

current cosmological observations limit λ = 15.6± 1.3, α > 0.4, and the present value of the
field-amplitude 0 < F0 − 1 < 0.998, and its effective equation-of-state today −1 < weff,0 <
−0.998, at 95% C.L. In addition to parameter estimation, we compare the family of models
using the Bayesian model selection. We find that our f(R) model fits slightly better to current
data compared to the standard ΛCDM model. The approach here performed can be extended
to any f(R) model in order to test possible deviations from the standard cosmological model.
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1 Introduction

Since the discovery of the accelerated expansion of the Universe, many efforts have been
made to understand the cause of this remarkable phenomenon [48, 52]. The leading model
proposed so far assumes the validity of general relativity (GR) with the introduction of dark
matter and dark energy components, which together account for 96% of the total energy
density of the Universe. While dark matter plays a key role in structure formation, dark
energy is introduced to explain the late-time acceleration of the Universe. The simplest form
of the dark energy component, described by a perfect fluid with a constant equation-of-state
w(z) = −1, the well known cosmological constant Λ, leads to the standard ΛCDM model. Al-
though ΛCDM provides a good fit to current data, it still faces some theoretical challenges,
such as the coincidence and fine-tuning problems [13, 46, 47]. Also, current experiments,
with the use of model-independent techniques for reconstructing the properties of dark en-
ergy, support a mild time-dependent evolution of w(z) [3, 28, 36, 62, 69]. Hence, to attempt
to deal with these difficulties, alternative proposals to the conventional cosmological con-
stant term have emerged. Several options involve the introduction of new exotic fluids to the
energy-momentum tensor, such as quintessence and K-essence, amongst many other scenarios
[9, 16, 50, 63, 70]. Another popular route is provided by non-minimally coupling scalar-fields
to gravity and to matter [5, 17, 29]. Besides the dark sector, there exists a variety of models
where the present expansion is realised due to modifications of the laws of gravity (MG)
on cosmological scales. Some of them introduce non-linear terms to the standard Einstein-
Hilbert action, like f(R) theories [8, 31, 44, 54, 58], or higher dimensional braneworld models
[21, 39]. A further interesting possibility is to take the view that anisotropies might be re-
sponsible for the observed acceleration [2, 43]. Other alternatives and combinations are also
considered as good candidates [for a review see: 18, 20, 23, and references therein].

As a consequence of the introduction of different models, a fundamental question arises
regarding how to distinguish amongst these possibilities. The cosmic acceleration, produced
by any of these proposals, might affect both the expansion history and the growth rate of
large-scale structure in the Universe. Hence, a natural search for departures from the ΛCDM
model is to exploit present and future cosmological observations. At the background level, we
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assume the evolution is correctly described by the spatially-flat Friedmann-Robertson-Walker
(FRW) metric with a time-dependent scale factor a(t):

ds2 = −dt2 + a2(t)dxidxi. (1.1)

The cosmic evolution driven by a modified gravity model may be described in terms of
an effective equation-of-state weff(z), which is fitted with luminosity distance constraints,
e.g. from high-redshift supernovae data. However, the extra degrees of freedom in extended
GR models result in more freedom to reproduce any desired background evolution. That
is, given the Hubble rate H = H(a), one can identify a complete family of models such
that the Friedmann equation is satisfied, and hence at the background level, suitable MG
theories might be indistinguishable from ΛCDM or dark energy theories [45, 56]. Then, our
analysis is mainly focussed on the cosmological perturbations. In this context, two scalar
field potentials, Ψ(t,x) and Φ(t,x), specify the evolution of linear perturbations around a
flat FRW background:

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1− 2Φ)γijdx
idxj . (1.2)

Standard ΛCDM and models with minimally coupled scalar fields are based on the assump-
tion that the Newtonian potentials Φ and Ψ, satisfy the relation Φ = Ψ. Nevertheless,
modified gravity models usually predict the existence of an effective anisotropic stress, so the
two metric potentials are no longer necessarily the same. Thus, we may differentiate a dark
energy model from a particular modified gravity theory via the relationship between the two
metric potentials Φ, Ψ and the density perturbation δm [33].

For the purpose of detecting possible departures from general relativity, we incorpo-
rate time and scale-dependent functions, µ(a, k) and γ(a, k), into the Poisson and anisotropy
equations in standard GR. This approach has been employed before in the search for depar-
tures from ΛCDM, see for instance [7, 27, 40, 57, 68]. Then, for a generic MG theory, the
linearised Einstein-like equations have the following form

k2

a2
Ψ = −κ

2

2
µ(a, k) δρm, (1.3)

Φ = γ(a, k) Ψ, (1.4)

δ̈m + 2Hδ̇m +
k2

a2
Ψ = 0. (1.5)

The screened mass function µ is interpreted as the ratio of an effective gravitational constant
relative to the Newtonian constant, µ ≡ Geff(a, k)/GN. The other relevant function, the grav-
itational slip parameter γ, defined as the ratio of the spatial perturbation to the time-time
perturbation of the metric γ ≡ Φ/Ψ, is seen as an effective anisotropic stress. We observe
that modifications of GR, for which µ(a, k) = γ(a, k) = 1, affect, through the Newtonian
potentials, the growth of matter density perturbations δm, as shown in equation (1.5). Thus,
current or future surveys, may allow us to distinguish modified gravity models from general
relativity with a dark energy component.

In general, the action for modified gravity f(R) models may be written as

S =
1

2κ2

∫
d4x
√
−g f(R) + SM(gµν , ψM), (1.6)
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where κ2 ≡ 8πG, g is the determinant of the metric gµν , f(R) is some arbitrary function
of the Ricci scalar R, although in the most general case it may also contain an scalar field
dependency f(R,φ); the matter action SM depends on gµν and matter fields ψM. Notice that
the action (1.6) contains, in particular, the standard Einstein-Hilbert action f(R) = R− 2Λ.
Thus we consider the standard metric formalism by performing the variation of the action
with respect to the metric tensor gµν , bearing in mind that in the Palatini formalism different
field equations may arise for a Lagrangian density non-linear in R [26, 65]. Varying the action
with respect to gµν , the following field equations are obtained [23]

FGµν −
1

2
(f −RF )gµν − F,µ;ν + 2Fgµν = κ2T (M)

µν , (1.7)

where subscripts ‘,X ’ stand for partial derivative with respect to the variable X, e.g, F (R) ≡
∂f/∂R = f,R and likewise F,R = f,RR = ∂2f/∂R2. Also · ≡ d/dt and ′ ≡ d/d ln a below; Gµν
is the Einstein tensor.

In this work we particularly focus on a version of the Starobinsky model, and then use current
SNe, LSS and CMB data to constrain the parameter-space. Finally, because the addition of
parameters to the standard model may lead to an arbitrary accurate fit, we consider the
Bayesian evidence as a quantitative implementation of Occam’s razor. In this way, we obtain
the model preferred by current observations.

The outline of the paper is as follows. In Section 2, we discuss the background evolution
and scalar perturbations for a modified gravity theory, in particular f(R) models. Section 3
describes the parameter estimation and model selection analysis. We then specify observable
quantities used to constrain the parameter-space through current data sets. The constraints
on the parameters used to describe the modified gravity models, along with Bayesian evidence
values, are discussed in Section 4. We present our conclusions in Section 5.

2 f(R) Gravity

The simplest family of MG models that gives rise to the acceleration of the universal expan-
sion are obtained by replacing the Ricci scalar R in the usual Einstein-Hilbert Lagrangian by
a non-linear function of R. Since modifications of gravity are more apparent at low redshift,
we henceforth ignore the radiation component due to its relative unimportance for structure
formation at late time. We thus base our analysis on non-relativistic matter with background
energy density ρm and negligible pressure Pm = 0.

2.1 Background evolution

For the background evolution, the metric (1.1) leads to the Ricci scalar given by

R = 6(2H2 + Ḣ). (2.1)

The modified Friedmann equation then becomes:

3FH2 = (FR− f)/2− 3HḞ + κ2ρm. (2.2)

To find solutions for H and R, we follow [31, 41] and introduce new variables, which vanish
in the high-redshift limit where f(R) modifications are negligible:

– 3 –



yH ≡
H2

Rc
− a−3, yR ≡

R

Rc
− 3a−3, (2.3)

with Rc given in terms of the average matter-density today ρm,0, by Rc = κ2ρm,0/3. Thus,
equations (2.1) and (2.2) are expressed as a set of ordinary differential equations

y′H =
1

3
yR − 4yH , (2.4)

y′R = 9a−3 − 1

yH + a−3

1

Rcf,RR

[
yH − (f,R − 1)

(
1

6
yR − yH −

1

2
a−3

)
+

1

6

f −R
Rc

]
. (2.5)

It may be shown that the expansion history generated by a f(R) model is identical to that
of a standard dark-energy model with an effective equation-of-state:

1 + weff = −1

3

y′H
yH

. (2.6)

2.2 Scalar perturbations

The evolution of the scalaron field F , is determined from the trace of Equation (1.7)

3�F (R) + F (R)R− 2f(R) = −κ2ρm. (2.7)

This field equation can be written as a Poisson equation �F (R) = ∂Veff/∂fR, with an
effective potential

∂Veff
∂F

=
1

3

[
2f(R)− F (R)R− κ2ρm

]
, (2.8)

which presents an extremum value located at 2f(R)− F (R)R = κ2ρm.
In the high-density region, where |(f −R)/R| � 1, the extremum of the potential defines the
time-dependent scalaron mass MF

M2
F ≡

∂2Veff
∂F 2

=
R

3

(
1

m
− 1

)
, (2.9)

where m = Rf,RR/f,R characterises the deviation of the background dynamics from the
ΛCDM model (m = 0 at all times) [5]. Thus, viable f(R) models are constructed such that
the scalaron mass MF is heavy enough in the regime of high matter density and becomes
lighter at the present time to produce the accelerated expansion of the Universe. This process
may be achieved via a chameleon mechanism [10, 34] ensuring that local gravity constraints
are locally satisfied [31, 66]. On the other hand, using the quasi-static approximation [60] 1,
the evolution of perturbations at linear order lead to expressions for the Newtonian potentials
of the form:

k2

a2
Φ = −κ

2δρm
2F

2k2/a2 + 3M2
F

3k2/a2 + 3M2
F

,
k2

a2
Ψ = −κ

2δρm
2F

4k2/a2 + 3M2
F

3k2/a2 + 3M2
F

. (2.10)

It is useful to introduce a function A(a, k) [49] given by the squared ratio of the Compton
wavelength to the physical wavelength of a mode:

A(a, k) =

(
k

aMF

)2

. (2.11)

1A similar paper studies modified gravity theories without using the quasi-static approximation though [1].
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Figure 1. Functional behaviour of µ and γ. The vertical line A(a, k) = 1 represents the transition
regime between GR and ST. Left to this line GR is recovered, whereas right to the line the growth of
structures is enhanced by modifications of gravity.

Making a comparison of the equations for Φ and Ψ in (2.10) with those written in (1.3) -
(1.4) for µ and γ, one has:

µ(a, k)F = 1 +
A(a, k)

3 + 3A(a, k)
, γ(a, k) = 1− 2A(a, k)

3 + 4A(a, k)
. (2.12)

We observe that f(R) models, through µ(a, k) and γ(a, k), predict a characteristic scale-
dependent growth of LSS which might be observationally detectable. The impact of the
above relations on the evolution of the gravitational potentials and the growth of density
perturbations is as follows: for a mode located in the general relativistic regime (A� 1) the
scalaron behaves as a massive field making deviations from GR negligible, and the standard
relation Φ ' Ψ is thus recovered. On the other hand, when a mode is situated within the
scalar-tensor regime (A � 1), the scalaron behaves as a light particle, giving rise to an
effective Newtonian constant Geff = 4/(3F ), and the relation between the metric potentials
becomes Φ ' Ψ/2. Therefore, the enhancement of the gravitational potential Ψ increases
the growth rate of linear density perturbations on scales below the Compton wavelength
[58]. If the transition between these two regimes (A = 1) occurred during matter domination,
modifications of the observed matter power spectrum might signal deviations from the ΛCDM
model [49]. The two regimes are described as follow:

µ ' 1

F
, γ ' 1, A� 1 GR, (2.13)

µ ' 4

3F
, γ ' 1

2
, A� 1 ST. (2.14)

Note that the factor F−1 corresponds to a rescaling of the Newtonian constant GN, for which
the value is very close to unity for models that satisfy local and Galactic constraints. Figure 1
shows µ(A) and γ(A) functions. The vertical axis represents the amplitude of µ and γ as a
function of the squared ratio of the Compton wavelength to the physical wavelength, and
the vertical line, A(a, k) = 1, the transition between the GR and the ST regime. Left of this
line the behaviour is well described by (2.13), whereas on the right hand side, the observed
enhancement of the growth of structures is described by (2.14).

2.3 A particular f(R) model

We have, so far obtained expressions to describe the background evolution (2.6) and the
cosmological perturbations (2.12) for a generic f(R) model. Here, to exemplify our approach,
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we consider a particular f(R) model and look at its observables. By construction, we assume
f(R) is a well-behaved function, continuous in all its derivatives. It also has to satisfy some
further conditions in order to yield to a viable theory [6, 49, 58, 61]: f,R > 0 to avoid the
appearance of ghosts; f,RR > 0 to avoid tachyonic instability; f(R) → R − 2Λ to include
phenomenology of ΛCDM as a limiting case and recover BBN and CMB constraints at early
times; |F0 − 1| � 1 to satisfy Solar and Galactic constraints. Thus, we focus the study on a
version of the Starobinsky model [58]:

f(R) = R− λRc

[
1−

(
1 + α

R

Rc

)−n]
, (2.15)

with positive constants λ, α and n, and R given by the solutions of equations (2.1) and
(2.2). In the region of high density (R� Rc), model (2.15) and the Hu & Sawicki model [31]
have a similar behaviour. Also model (2.15), with n = 1, closely mimics mCDTT [14] plus a
cosmological constant, and the inverse squared-curvature model for n = 2 [42]. Some other
f(R) models with an exponential form [8] may also be considered as viable alternatives.
Given the f(R) model (2.15), we are now able to compute its corresponding effective equation-
of-state weff(z) (2.6), which dominates the dynamics of the late-time expansion rate, and µ, γ
(2.12) to describe the perturbations. Another function to bear in mind is the rescaling factor
F of the Newtonian constant, given by

F (R)− 1 = −λαn
(

1 + α
R

Rc

)−n−1

. (2.16)

An important point to emphasise is the behaviour presented by |F−1|: as R� Rc, |F−1| be-
comes negligible, thus approaching the General Relativistic limit. Previous studies have cho-
sen F0 as a sampling parameter, although in our case, we consider it more natural to sample
over α, with F0 being a derived parameter. Also notice that at the extremum of the effective
potential (2.8), the expansion history can approximate ΛCDM by setting λ ' 6Ωeff,0/Ωm,0,
with Ωm,0 the average matter density today and Ωeff,0 = 1− Ωm,0.

Hence, for the model (2.15) the effective equation-of-state weff (2.6) and the squared
ratio of the Compton wavelength to the physical wavelength of a mode A(a, k) (2.11) are now
parameterised in terms of α, n and the cosmological parameters Ωm,0 and H0. These param-
eters together determine the epoch and scale on which modifications to GR may be relevant.
In general, having a dependence on space and time makes the analysis more challenging. To
understand the relationship of the new parameters with current observations let us consider
some particular cases. In Figure 2 we show some of the relevant functions which parameterise
the MG models using different α values, for n = 1 (left panel) and n = 2 (right panel); in
both cases we have maintained fixed values of Ωm,0 = 0.25 and H0 = 70. The top panels
show the behaviour of the normalised function f(R)/(R−2Λ). The middle panels display the
effective equation-of-state for different values of α. We observe that at the background level,
modified gravity models with α > 0.5 (n = 1) or α > 0.2 (n = 2) present deviations by just
few percentages away from the cosmological constant. However, at the perturbations level
(bottom panel), even larger values of α may be differentiated by the epoch they cross the
regime line A = 1, and therefore µ be described by (2.14). A similar interpretation is used for
the n parameter: a transition taking place at later times corresponds to higher values of n.
One notices the existence of a pronounced degeneracy: for an increment in n, small values of
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Figure 2. Redshift evolution of different functions used to describe a modified gravity model, with
different values of α and n; at scale k = 0.1 Mpc−1. f(R) function normalised to the standard ΛCDM
(top), effective equation-of-state weff (middle) and the screen mass function (bottom).

α mimic the same behaviour, for instance, models with {n = 1, α = 5} and {n = 2, α = 0.5}
behaved similarly. Finally, we emphasise that the screened mass function µ and the gravita-
tional slip parameter γ must equal one, at high redshifts to recover GR. That is, in order to
maintain the properties of Big Bang Nucleosynthesis (BBN) at early times, we should impose
the condition

µ(z, k) = γ(z, k) = 1, z & 30. (2.17)

This condition is translated into A� 1 at z & 30 for the whole range of physically relevant
wavenumbers.

3 Analysis

We seek to impose constraints on the aforementioned parameterisations from cosmological
observables as well as determine which model best describes current data. Since the evolution
of matter perturbations and gravitational potentials may differ from standard GR, observa-
tions of CMB anisotropy, cosmic evolution and growth of structure are important probes for
discriminating amongst modified gravity models. In order to compare the modified gravity
influence on observable quantities, such as the CMB, matter power spectrum and luminosity
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distances, we incorporate µ and γ functions to the standard Boltzmann CAMB code [38]
up to z ∼ 30, when deviations introduced by modified gravity become negligible. Different
versions of the Modified CAMB code have also been released by e.g. [30, 32, 68]. Also, with
the use of a post-Friedmann prescription (PPF) implemented by [22], we have included the
effective equation-of-state weff predicted by a modified gravity model.

The combination of current observations at different epochs and scales will strengthen
the constraints on the parameters allowing one to discriminate amongst theories. To constrain
the parameter-space in each model, we include temperature and polarisation measurements
of the Wilkinson Microwave Anisotropy Probe 7-year (WMAP7; [35]), together with the
Atacama Cosmology Telescope (ACT; [19]), the Quest (Q and U Extra-Galactic Sub-mm
Telescope) at DASI (Degree Angular Scale Interferometer) (QUAD; [11]), and the Back-
ground Imaging of Cosmic Extragalactic Polarization (BICEP; [15]). In addition to CMB
data, we incorporate distance measurements of 557 Supernovae Ia from the Supernova Cos-
mology Project Union 2 compilation (SCP; [4]). We also consider baryon density information
from Big Bang Nucleosyntesis (BBN; [12]), and impose a Gaussian prior on H0 using mea-
surements from the Hubble Space Telescope key project (HST; [53]). Additional to CMB and
SNe observations, we include large scale structure data from the Sloan Digital Sky Survey
(SDSS) Data Release 7 (DR7) Luminous Red Galaxy (LRG) power spectrum [51].

Throughout the analysis, we consider purely Gaussian adiabatic scalar perturbations,
neglecting contributions from tensors and massive neutrinos as dark matter. We base our
analysis on a modified ΛCDM model which assumes a FRW background universe specified
by the following parameters: the physical baryon density Ωbh

2 and cold dark matter density
ΩDMh

2, respectively, relative to the critical density (h is the dimensionless Hubble parameter
such that H0 = 100h kms−1Mpc−1), the ratio θ of the sound horizon to angular diameter
distance at last scattering, the optical depth τ at reionisation, the amplitude As and spectral
index ns of the primordial power spectrum, the running of the index nrun ≡ dns/d ln k and the
primordial curvature perturbation amplitude As, defined at pivot scale k0 = 0.015 Mpc−1.
Aside from the Sunyaev-Zel’dovich (SZ) amplitude ASZ , the ACT likelihood incorporates two
additional secondary parameters: the Poisson point source power Ap and the clustered point
source power Ac. The parameterisations of MG models contain the ΛCDM model as a subset
in their parameter space, thus the flat priors on the parameters in common are kept identi-
cal for each considered case: Ωb,0h

2 = [0.01, 0.03], ΩDM,0h
2 = [0.05, 0.2], θ = 100 × [1, 1.1],

τ = [0.01, 0.3], ln[1010As] = [2.5, 4], ns = [0.5, 1.2] and nrun = [−0.1, 0.1]. With regards to the
additional parameters, we assume three illustrative cases: n = 1, 2 with flat priors α = [0, 5]
and α = [0, 50] respectively; and varying n within the range n = [0, 2] and α = [0, 50].

The preferred model given current cosmological observations is selected through its
Bayes factor. In general, the calculation of the Bayesian evidence is a very computationally
demanding process. To carry out the model selection we incorporate into the CosmoMC
software [37] a substantially improved and fully-parallelized version of the nested sampling
algorithm called MultiNest [24, 25]. The Bayes factor Bij , or equivalently the difference in
log evidences lnZi− lnZj , provides a measure of how well model i fits the data compared to
model j. A suitable guideline for making qualitative conclusions has been laid out by Jeffreys:
if Bij < 1 model i fits equally well as model j, 1 < Bij < 2.5 constitutes significant evidence,
2.5 < Bij < 5 is strong evidence, while Bij > 5 would be considered decisive [59, 64].
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Figure 3. 2D Marginalised posterior distributions of sampling parameter α along with derived pa-
rameters: the effective equation-of-state weff,0 and the field amplitude |F0 − 1| at present time; using
n = 1 (top panels) and n = 2 (bottom panels).

4 Results

In this section we present the resulting posterior distributions and model evidences computed
from the gravity models using our data sets. Despite the additional parameters, the mean
values of the standard cosmological parameters remained basically unaffected. That is, their
likelihoods peak around standard ΛCDM values, and so we do not consider them further.

We have restricted our analysis to the model presented in (2.15). As we pointed out, this
particular parameterisation can be studied in terms of α, n and the cosmological parameters
Ωm,0, H0; although, constraints on H0 and Ωm,0 present no significant deviations from the
ΛCDM model. Figure 3 shows 2-D marginalised posterior distributions of the modified gravity
parameter α along with the rescaling factor and the effective equation of state at the present
time, |F0 − 1| and weff,0, respectively. Top panel corresponds to n = 1, whereas n = 2 to
bottom panel. We notice that the effective equation-of-state at the present time weff,0 ≡
weff(z = 0) exhibits only slight deviations from the cosmological constant with −1 < weff,0 <
−0.996 (n = 1) and −1 < weff,0 < −0.997 (n = 2). At the perturbations level, preferred values
of the field amplitude at the present time are |F0 − 1| < 0.003 (n = 1), and |F0 − 1| < 0.002
(n = 2). Higher values of α may be seen as approaching the ΛCDM model where |F0−1| → 0
and weff,0 → −1, as illustrated previously in Figure 2. Modified gravity models lead to
broader constraints on density fluctuations, σ8, where higher values are preferred, as shown
in Table 1. With regards to the case where n is treated as a free parameter, 0 < n < 2, we
observe that constraints on α, weff,0 and |F0− 1| are slightly broadener: −1 < weff,0 < −0.99
and |F0−1| < 0.007 (see Figure 4). Here it is noticeable that higher values of n lead to ΛCDM
standard values, for instance, on the behaviour of σ8 shown in the right panel of Figure 4.
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Figure 4. 2D Marginalised posterior distributions of sampling parameter α along with the effective
equation-of-state weff,0, the field amplitude at the present epoch |F0−1|, and the density fluctuations
σ8 in spheres of radius R = 8h−1 Mpc.

Table 1. Constraints on modified-gravity parameters. For one-tailed distributions the upper limit
95% CL is given. For two-tailed the 68 % is shown.

ΛCDM n = 1 n = 2 0 < n < 2

α − > 0.7 > 0.4 unconstrained

n − − − > 0.53

λ − 15.8± 1.3 15.6± 1.3 15.4± 1.4

H0 68.5± 1.4 69.7± 1.4 69.6± 1.4 69.4± 1.4

Ωm 0.293± 0.017 0.276± 0.017 0.278± 0.016 0.281± 0.018

σ8 0.819± 0.019 0.945± 0.027 0.914± 0.032 0.915± 0.049

weff,0 − < −0.996 < −0.998 < −0.99

|F0 − 1| − < 0.003 < 0.002 < 0.007

−2∆ lnLmax − −0.22 −1.21 −1.49

Bi,Λ − +0.5± 0.3 +1.0± 0.3 +0.8± 0.3

The summary of the parameter constraints is given in Table 1. One-tailed constraints are
quoted at 95% C.L. whilst for two tails 68% is shown. We note that similar constraints on λ
and |F0− 1| have been found by using a subset of the parameter-space and particular values
of the wavenumber k [55, 67].

We have computed the Bayesian evidence for each model to perform a model comparison,
according to the Jeffreys guideline. When the set of models are ranked with respect to its
Bayesian value f(R) models are preferred despite having extra parameters, when compared
to the ΛCDM model. Important attention is paid to the evidence of the f(R) with n = 2,
which is significantly preferred, Bi,Λ = +1.0± 0.3, and over the rest of the models, shown in
the last row of Table 1.
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5 Conclusions

We have undertaken an analysis of modified gravity models by studying its background
history as well as linear perturbations. At the background level, the dynamics of f(R) models
is encoded in the effective equation-of-state weff , whereas at the perturbations level it depends
on the ratio of the metric potentials µ and the effective gravitational constant γ. Initially,
we provided a description for these three functions with a general f(R) model. Then, we use
as an example a variant of the Starobinsky model to constrain the parameter-space using
current cosmological observations. We have found that constraints on the base parameters
are largely unaffected by the introduction of these three effective functions. That is, best-fit
values for the standard parameters shift by less than 1σ. The only notable exception is σ8,
whose marginalised uncertainties increase by up to a factor of two upon the introduction of
extra parameters. This is consistent with the observation that µ and γ principally modify the
growth history of cosmological perturbations. Figure 5 shows the reconstructed f(R), weff

and µ at k = 0.1 Mpc−1, using posterior samples in the region (2σ) around best-fit values. We
observe that measurements on the screen mass function present slight deviations from unity
at the latest times (z < 2), but still consistent with values µ = γ = 1. Deviations from µ = 1
increase at smaller scales (larger k), however at the smallest scales non-linear physics plays
an important role and linear perturbation theory is no longer valid. Similarly for the f(R)
function. Larger differences, between f(R) and R − 2Λ, exist at the present time (less than
1%), whereas at early epochs f(R) approaches the standard ΛCDM model. Finally, we have
applied a Bayesian criterion to carry out cosmological model selection and found, in the sense
of Jeffreys guideline, that the variant of the Starobinsky f(R) model with n = 2 provides
a slightly better fit compared to the ΛCDM model: Bi,Λ = 1.0 ± 0.3. Although a particular
f(R) was chosen, this analysis may be easily extended to a broad classes of models, with
the use of high accurate experiments, in order to look for deviations from the cosmological
constant model.
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